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tion more faithfully over the whole x-range. However, the Hastings approximation5 
achieves, with its four arbitrary constants, a better fit in the range of low, positive 
x-values most often of interest, and it is therefore preferable for most applications. 
For x > 2, the Hastings approximation does not fit as well as P(x). This leads to a 
somewhat paradoxical observation: While the greatest absolute error for F(x) esti- 
mated from the Hastings approximation is only about one-fifth that obtained with 
P(x), the greatest relative error with the latter is two orders of magnitude below 
those encountered with the Hastings approximation. 
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Rational Approximations to the Solution of the 
Second Order Riccati Equation* 

By Wyman Fair and Yudell L. Luke 

I. Introduction. In a previous work M\'Ierkes and Scott [1] constructed con- 
tinued fraction solutions to the first order Riccati equation by using a sequence of 
linear fractional transformations. Fair [2] utilized the r-method, see the paper by 
Luke [3], to develop main diagonal Pad6 approximations to the solution of the first 
order Riccati equation with rational coefficients. Rational approximations are ad- 
vantageous to study the behavior of the solutions in a global sense. That is, they 
are useful for evaluation of functional values in the complex plane including zeros 
and poles. 

In this paper we develop continued fraction (and hence rational) approxima- 
tions to the solution of a second order nonlinear equation which includes as special 
cases the equations treated in [1] and [2]. These approximations are obtained by 
using a sequence of linear transformations which leave the differential equation 
invariant, see Davis [4], and are presented in Section II. For an application, in 
Section III, the algorithm is applied to obtain approximations to Painleve's first 
and second transcendents. 

II. Development of the Rational Approximations. Consider the generalized 
second order Riccati equation 
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(Ao + Boy)y"f + (Co + Doy)y' - 2Bo(y')2 + Eo + Foy + Goy2 + Hoy3 = 0, 

Y(O) = o, 

where the coefficients in (1) have Taylor's series expansions of the form 

AO x2 akXk, Bo = x 2E bkXk, Co = x E cXk, 

(2) Do= x dkxk Eo = E ekx, eo 0 0, Fo = Zfxfk, f2 0, 

GO x Ekx and Ho = x E hkx, 

taking all the sums from k = 0 to k = co. We further assume that the solution of (1) 
has a power series expansion of the form 

00 

(3) Y= kX 
k-O 

Note that (2) and (3) together with (1) uniquely determine f0 and f1. We also 
require that the coefficients in (3) have the property that the determinants 

'= AP jij 0 vj =i;+j; i,j =0 1 , l p; p = 0,1,2, 

and 

(4) P2p~l =Wi j l f 0, Wij = ,Oi+j-1 i~j =1, 2, 3 .. * ,p; p =1, 2, 3, 7 

Then (4) insures that y has a continued fraction expansion of the form 

()ao al x a2 X 
(5) y i 1 + + 1..., 

A transformation of the type 

= m(x) + n(x)y* 
p(x) + q(x)y* 

where tn, n, p and q are polynomials in x may be necessary to bring the differential 
equation into the required form. We suppose that this has already been done. See 
[4] for the results of applying transformations of this type to (1). We give an ex- 
ample in Section III. 

The even approximants of (5) are the main diagonal Pad6 approximations to y 
which have the following properties. Let 

Pn n k n k 
E9) A~~~~n, - E Pn~k x / E qn,k x 

Qn k=O k=j 

be the nth order main diagonal Pade approximation to y. If Qn is formally divided 
into Pa , the resulting power series agrees with the power series representation of y 
for the first (2n + 1) terms. The polynomials Pn and Qn both satisfy the recurrence 
relation 

Pn = [1 + (a2n-1 + a2n)X]P,-1 - a2n-la2n 2X Pn-2 
i(7) 

Po = ao, Pi = ao(1 + a2X), QO and Q=1 + (a + a2)x. 

Thus, rational approximations to the solution of (1) are immediately forthcoming if 
the values al, a2 ... can be computed. These values can be obtained by utilizing 
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a sequence of linear fractional transformations. Let 

(8) y = Yo YX n = an(l + Xyn+1) , n ? 0. 

Repeated application of (8) to (1) and division by anx at each step yields 

(An+1 + Bn+lyn+l)Yn+l + (Cn+l + Dn+lyn+1)yn+l -2Bn+l(y+1)2 

+ En+1 + Fn+lyn+l + Gn+y + Hn+1y3+1 -0, 

where 

An+, = -An -anBn X 

Bnll = -xAn 7 

Cn+j = -2x-1(An + anBn) - Cn - anDn, 

(10) Dn+l= 2An -XCn 

En+1 = x' (an ,En + Fn + atnGn + an2Hn) 

Fn+1 = -.x1(Cn + anDn) + 3a'n-En + 2Fn + anGnX 

Gn+i = 2x-An - Cn + 3aon1xEn + xFnX 

and 

Hn+1= an 'x2En) n = 0, 1, 2, 

It is easily shown that 

An+1(0) = Bn+1(0) = Cn+](O) Dn+1(0) = Gn+1(O) = Hn+I(O) = 0, 

En+, and Fn+i are defined at x = 0 and 

(11) Yn+1(O) = =n+1- -En+1(0)/Fnf1(0), n = 0, 1, 2, 

Thus the values ak appearing in (5) can be computed recursively. 
In the general situation closed form expressions for the ak are not known. De- 

tails concerning their asymptotic values are lacking. If such data were available, 
the question of convergence of the approximations could be settled by application 
of known theorems in the theory of continued fractions. See, for example, Wall [61 
and Perron [7]. In numerous special cases convergence has been established, 
see the latter two references, Merkes and Scott [11, Fair [2] and Luke [31. Heuristic 
evidence indicates convergence for rather liberal conditions on the coefficients of 
the differential equation (1) and a wide range of the variable. In this connection 
one can imply convergence of the approximants (6) by comparing the values 
of the nth and the (n + I)st approximations. In practice this works very well, 
and in the cases investigated the actual error of the nth approximant is the order 
of magnitude of the difference yn.+(x) - yn(x). 

III. Examples. We consider two examples which exhibit the utility of these 
approximations when used to approximate both the function and its poles. 

Painlev6's first and second transcendents are defined by the differential equa- 
tions 

(12) u"-6u2 (12) u -6u -Xx= 0, u (0) =1, U' (0) = 0 
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TABLE I TABLE II 

x u(x) U6(x) x V(X) V6(X) 

0.0 1.0000 1.0000 0.0 1.0000 1.0000 
0.1 1.0305 1.0305 0.1 1.0152 1.0152 
0.2 1.1264 1.1264 0.2 1.0626 1.0626 
0.3 1.3015 1.3015 0.3 1.1464 1.1464 
0.4 1.5831 1.5831 0.4 1.2742 1.2742 
0.5 2.0228 2.0228 ; 0.5 1.4592 1.4592 
0.6 2.7212 2.7212 0.6 1.7254 1.7254 
0.7 3.8909 3.8909 0.7 2.1184 2.1184 
0.8 6.0383 6.0383 0.8 2.7369 2.7369 
0.9 10.6226 10.6223 0.9 3.8344 3.8343 
1.0 23.3936 23.3860 1.0 6.3110 6.3104 
1.1 87.7732 87.3769 

and 

(13) V" 2v3 -xv - =0, V(0) =1, V (0) =0, 

respectively. In what followsX =A = 1.0. 
TO cast (12) and (13) into the required form of (1), we set u = 1 + 3x*i 

and v-1 + 1. 20 in which case (12) and (13) become 

(14) 3x2i + 12x'a' + (6 - 36x2)4 - 54z4u2 - (6 + x) = 0, a(0) 1 

and 

320" + 10x#' + (5 - 18X2 - 6x3)V - 27x4# - 13.5A3 - (5 + 4x) = 0, 

()(0) = 1. 

Now u has a pole of the second order at x-- 1.2067 and v has a simple pole at 
x = 1.1577. This behavior manifests itself in Tables I and II above in which ii, 
and ie are the sixth order main diagonal Padd approximations to a and v obtained 
using the algorithm of ?II. We have 

u6= 1 + 3x296 and va = 1 + 1.5x206. 

The values of u(x) and v(x) were taken from a paper by SiMon [5] who used (12) 
and (13) as examples in a study of a numerical integration technique for the solu- 
tion of initial value problems in ordinary differential equations. 

The poles of smallest magnitude of u6 and v6 are 1.2058 Jt 1.0134 and 1.1578, 
respectively, so that one would expect that the poles of u and v could be computed 
to any desired degree of accuracy using higher order approximations. Indeed this 
is the case when the approximations converge. 
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On the Evaluation of the Incomplete Gamma 
Function 

By Roy Takenaga 

0. Abstract. The accurate evaluation of the x2 distribution for high degrees of 
freedom by the usual methods is very difficult (even with a digital computer) be- 
cause the series to be evaluated would become unbearably long. Also, when a series 
becomes long, more precision in the numbers used is required in order to offset the 
effects of round-off errors. On a computer this would mean the use of multiple pre- 
cision. Accurate tables can be, and have been, prepared by use of the Cornish-Fisher 
approximation. Comparison of the table values with the values obtained by the 
method in the writer's paper show that these tables have an accuracy of about six 
significant figures. For practical purposes there seems to be no lack of x2 tables for 
high degrees of freedom. The method in the writer's paper is still useful in checking 
on the accuracy of tables computed by approximate methods or in producing tables 
with more significant figures. With single precision it can produce tables of seven 
figure accuracy at a speed far better than could be by the usual accurate methods. 
Some unique and useful tables can be produced using this method. 

1. Introduction. The incomplete gamma function is defined by K. Pearson [2, 
p. v] to be 

( 1 ) r,(P + 1) = ftOet dt, -1 < p,0 y. 

This paper presents a method of evaluating the ratio 

(2) Fp(y) = r,(p + 1)/r(p + 1), -1 < p, 0 < ye 

for cases in which p is greater than about 15. For the lower values of p there are a 
number of integration methods. Among them is the formula [2, p. xv] 

-Y p+i 2 

_e ~y ___ 

(3) = (p+ 2)1 +p+ 2 (p+ 2)(p +3) 

(p + 2)(p + 3) .. (p + k) + 
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